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A Note on Stochastic Approximation Algotrithms
in System Identification

H. G. KEWATNY

Abstract—This correspondence considers the application of
stochastic approximation algorithms to a broad class of system
identification problems. Both asymptotic and initial convergence
properties of the algorithms are discussed. A suboptimal procedure
for parameter selection and a means of convergence acceleration
are suggested.

INTRODUCTION

A variety of interesting problems of system identification, both
linear and nonlinear, can be formulated in terms of the discrete-
time linear model

Yn = anlyn + Na (1)

relating the output y. (scalar, for simplicity), input ¥, (random
s-vector), unknown parameter @, (s-vector), and random noise 5,
[2]-[5], [7]. Numerous papers have been concerned with the on-line
estimation of a. using stochastic approximation algorithms (for
example, [3]-([7]).

It appears to be well known, although not explicitly stated, that
if (1) is an exact representation, then unbiased estimates of a, can be
obtained by these methods without prior knowledge of the statistical
parameters of ¥, and 5., provided ¥, and 7. are statistically orthog-
onal (and, of course, ¥, repeatedly spans s-space). If ¥, and 5, are
not orthogonal, then the estimators are generally biased and some
statistical parameters of ¥, and/or 5, must be known in order to
remove the bias [4]-[7]. However, the requirements for a non-
parametric formulation can frequently be met (but not frequently
enough, unfortunately). This is, perbaps, the strongest attraction
for stochastic approximation methods.

It should also be noted that it is generally assumed that ¥, and
1+ are temporally independent sequences (as well as being mutually
independent). However, this assumption is not necessary and greatly
restricts the class of problems which can be cast into the form of
(1). In {3] it was shown to be sufficient that ¥, (and 7.) become
independent at a geometric rate and actually this can be relaxed to a
harmonic rate which correlates with conditions originally presented
by Sakrison [1].

Even under such fortuitous circumstances, most proposed (non-
parametric) stochastic approximation algorithms have the dis-
advantage that, although asymptotic convergence is assured, very
little can be done to control the initial convergence properties.
However, an algorithm proposed in [3] and which also appeared in
[6] has some very favorable characteristics in this regard. These
will be explored in the following.
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PROPERTIES OF STOCHASTIC APPROXIMATION ALGORITHMS
Discussion of the major points is facilitated by comparing the
behavior of the more-or-less standard algorithm
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n+1 (@-» Yn'— Yn)¥n 2)

with the proposed algorithm
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It can be shown (as in [3]) that if the joint density functions of
Y, and 7. satisfy P(¥,|¥s) = P(¥;) 4 o((p — »)71), Pluslna) =
Pyp) + o((p — »)71) for p — n — = and that variations in a,
vanish asymptotically at the rate n~* where w > 1, then, in both
cases, the mean-square estimation error (Jjp.||?), where pn = &, —
@, is bounded by a quantity z. satisfying the difference equation

xm=&%+afﬂﬁ 2o = {|[ool|2) )
where B depends mainly on the observation noise and is proportional
to k2 and » = min (2w — 1,2). The sequence £, will be discussed
below.

On the basis of (4), both estimators can be shown to converge in
the mean; in fact, the asymptotic behavior is expressed by the
relations

2B
(”p;.”z) ~ m n==1, forv — 1 < 2ky
= 0(n %), fory —1 > 2ky (5)
for estimator (2), and
2B
(”‘,"”2) ~ %ﬁ——(”T- n— @D, forr — 1 < 2k8

1

= O(n~2k8), fory —1>2k8 (6)
for estimator (3), where v = inf, vs, 8 = inf, 8., where v, is the
smallest eigenvalue of the positive-definite matrix (¥,Y.”), and
Br is the smallest eigenvalue of the positive-definite matrix (¥Y,¥,.’/
||7]1®). Since the maximum value of » — 1 is 1, it is evident that
the asymptotic convergence of either estimator (2) or (3) will
never be faster than 1/x regardless of how large 2k y or 2k8 may be.

It is interesting to focus on the transient response of (4). In
[3] it is shown that lfnl < lforallm > Nowhere

k
Ny = integral part l:* X ﬁ:l (8]
2 v

for estimator (2), where 1 = Sup uas, u» being the largest eigenvalue
of the positive-definite matrix {||¥.||?¥»Y¥,"), and v is defined above.
For estimator (3)

Ny = integral part [g] 8)

This means that the transient part of (4) will converge mono-
tonically for n > Ny. Alternatively, it is possible for the estimate to
diverge from the desired vector for » < Ny. Since the quantity
/v is not known beforehand, it is impossible to determine Ny for
estimator (2). This is typical of most stochastic approximation
procedures, Furthermore, u/y may be quite large, especially if the
dimension of g is large. This means that there is likely to be an
initial period of divergence although asymptotic convergence is .
assured. The novel feature of estimator (3) is that Ny as given by
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(8) can be controlled by judicious choice of k. By choosing & = 1,
No = 0 so0 that the transient term is monotonically decreasing from
the inception of the iteration process.

A SuBoPTIMAL PROCEDURE

From (5) or (6), it is seen that it is always possible to choose
k sufficiently large so that the maximum rate of asymptotic con-
vergence is obtained, i.e., since » — 1 is at most 1, select & > 3v
or k¥ > %B. Unfortunately, v and 8 are not known a priori.
On the other hand, the disturbance coefficient B increases with £?,
and hence it is undesirable to choose & larger than necessary. To
further complicate the problem, the number Ny increases with k.
In the case of estimator (2), nothing can be done in view of the
limited @ prior? information in the way of selecting a near-optimum
value of k. An advantage of estimator (3) is that something more
can be done. To begin with, suppose that ¥, is s-dimensional and
let A, Ay, ' ¢, A be the eigenvalues of the positive-definite matrix
(Yn¥n'/||¥x|2. Then

Y.Y.
ir W>=)\1+7\2+“‘+)\3. 9)

« (i) = ) =

Now, a rather conservative upper bound for the minimum ejgen-
value A can be obtained by assuming all of the eigenvalues to be
equal. In this case, (9) and (10) yield Ay = 1/s. Thus, a conservative
estimate of 8 is 1/s, and hence we should choose & accordingly, say,
k = s. Note that s is the number of unknown parameters and may be
quite large. Once k is specified, Ny is given by (8). In order to retain
the property that the transient response of z, decreases from the
slart of the iteration procedure, the process is started with n = N,.

However,

(10)

CONVERGENCE ACCELERATION

In some instances, when 8 is quite small, the above estimate can
be far too conservative and poor convergence is obtained. This
situation is accompanied by a large spread in the eigenvalues of
(¥nYn'/||¥al?) (the matrix is ill conditioned), and arbitrarily
increasing the value of % is generally unsatisfactory. In such cases
it has been found advantageous to use a modified algorithm as
follows. At the time of computation of &.y1, in addition to the esti-
mate correction provided in (3), a correction orthogonal to ¥, and
lying in the plane of ¥, and ¥,_, is added. The algorithm is

~ n k Y.
an—i—l—an"n_'_l[”YHZ(GnYn— n)

”z ”2 (@nZn — J!Y,.llzyn_l—(n'n_l)yﬂ)] 1)

where
= ||¥a)f ¥t — (Fo'¥oi)¥ne (12)

This algorithm converges to the true value of the parameter and its
convergence properties may be characterized in terms of parameters
similar to those used above. The proof parallels the proof of con-
vergence of (3) as outlined in [3]. In this case, the property Ny =
integral part [k/2] is retained. A conservative choice of & can be
shown to be s/2. An example of the application of the algorithm
can be found in [3].
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Optimal Smoothing for Continuous-Time Systems
with Multiple Time Delays

K. K. BISWAS anp A. K. MAHATLANABIS

Abstract—Equations for the smoothed state estimate and for the
error covariances of a continuous-time system with multiple time
delays, based on observations involving time delays, are derived
through a combination of discretization, state augmentation, and
subsequent dediscretization procedures.

INTRODUCTION

Although the existing literature contains smoothing results for
non-time-delayed systems, no attempt seems to have been made to
extend these to the case of time-delayed continuous-time systems.
Priemer and Vacroux have reported some results for the discrete-
time version of the problem, which were obtained through projection
arguments [1], [2]. The aim of this correspondence is to report
smoothing solutions for a continuous-time system having both
transportation and observation lags. These are obtained by first dis-
cretizing the continucus-time problem and then employing a state
sugmentation technique [3] that converts the given problem into a
non-time-delayed higher dimensional filtering problem. The desired
smoothing solutions are then obtained from the components of the
higher dimensional filtering equations. Finally, a formal limiting
procedure is utilized to derive the continuous-time smoothing solu-
tions.

PROBLEM STATEMENT

Consider a time-delayed continuous-time system modeled by the
following equations:

L
i(t) = _Z()F;:(t)x(t — ) + w(t) (1)
M
y(t) = o(t) + Z{)H.-(t)z(t — 8 @)

where z is the n-vector system state, y is the m-vector observation,
«; and §; represent, respectively, the 7th delay in the system and ob-
servation equations with «; > ai1; 8i > Bi1; a0 = Bo = 0. L and
M denote the total number of delays in the system and observation.

The noise processes w(t) and »(¢) are assumed to be independent,
zero-mean, white, Gaussian processes with covariances Q(¢) and
R(¢), respectively, with R(¢) positive definite.

If it is assumed that ¢ = & (the kth sampling instant), e; = d:T,
and B8; = h:T where T is the sampling interval, the discrete-time
equivalents of (1) and (2) can be obtained in the form [4]

L
> Azt ~— d:T) 4+ wii)TVe (3)
i=0

oty 4+ T) =
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