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A Note on Stochastic  Approximation  Algorithms 
in System Idenacation 

H. G. ICWATNY 

Abstract-This correspondence considers  the application of 
stochastic approximation algorithms to a broad  class of system 
identification problems. Both asymptotic and initial  convergence 
properties of the  algorithms  are discussed. A suboptimal procedure 
for parameter selection and a means of convergence acceleration 
are suggested. 

INTRODUCTION 

A variety of interesting problems of system identification, both 
linear and nonlinear, can be formulated in terms of t,he discrete- 
time linear model 

yn = Qn‘Yn + T r  (1 1 

relating the  output y,, (scalar, for  simplicity), input Y,, (random 
s-vector), unknown  paramet.er an (s-vector), and  random noise ?,, 

[2]-[5], [7]. Numerous papers  have been concerned with  the on-line 
est.imation of a, using stochastic appro.ximation algorit,hms (for 
example, [3]-[7] ). 

It appears t.0 be well knom,  although  not explicitly st.ated, t,hat 
if (1) is  an exact  representation, then unbiased estimates of a,, can be 
obtained by these met.hods without prior knowledge of t,he stat,istical 
parameters of Y,, and qn, provided Y, and q n  are  statistically orthog- 
onal  (and, of course, Y, repeat,edly spans s-space). If Y, and I],, are 
not ort.hogona1, then t.he est,imat,ors are generally biased and some 
statist,ical parameters of Y, and/or q n  must  be known in order to 
remove the bias [4]-[7]. However, the requirements for a non- 
parametric formulation can frequently be met  (but  not  frequently 
enough, unfortunately). This is, perhaps, the  strongest  attraction 
for stochastic approximat,ion methods. 

It should also be noted that  it  is generally assumed that Y,, and 
q n  are t.empora.lly independent sequences (as well as being mutually 
independent). However, this assumption  is not. necessary and greatly 
restricts  the class of problems which can be  cast  into  the  form of 
(1). I n  [3] it was shown to  be s d c i e n t  that. Y, (and qn) become 
independent at a  geometric rate  and  actually  this can be relaxed to a 
harmonic rate which correlates with conditions originally presented 
by Sakrison [I]. 

Even under  such fortuitous circumstances, most. proposed (non- 
parametric) stochastic  approximation  algorithms  have the dis- 
advantage that., alt.hough asymptot,ic convergence is assured, very 
lit.tle can be done to cont,rol the inibial convergence properties. 
However, an algorit.hm proposed in [3] and which also appeared in 
[6] has some very favorable characterist.ics in this regard.  These 
will be explored in  the following. 
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PROPERTIES OF STOCELSTIC  APPROXJ3L4TION  ALGORITHNS 

Discussion of the major points is facilitated by comparing the 
behavior of the more-or-less standard algorithm 

with  the proposed algorithm 

It can be shown (as in [3]) that if the  joint densit.y functions of 
Yn and ?a satisfy P(YpIYn) = P(Yp) + o ( ( p  - nl-l), P(vplrln) = 
P(q,) + o ( ( p  - n)-l) for p - n - m and  that,  variations in an 
vanish asymptotically at   the rat.e n-w where w > 1, then, in both 
cases, t.he mean-square estimation  error (lIp,,112), where pn = a,, - 
an, is  bounded by a quantit.y x n  satisfying the difference equat,ion 

where B depends  mainly on the observation noise and is proportional 
to k2 and Y = min (2w - 1,2). The sequence 5. will be discussed 
below. 

On t,he basis of (4), b0t.h estimators can be shown to converge in 
the mean;  in  fact, the asymptot.ic behavior is expressed by t.he 
relations 

for estimator (2) ,  and 

= O(n - ZX-B), for P - 1 2 2kp (6 )  

for  estimator (3), where y = inf, y,,, 0 = inf,, Bn, where y n  is  the 
smallest  eigenvalue of the  positivedefinite  matrix (YnYn’), and 
pR is t.he smallest. eigenvalue of the positive-definite matrix (YnY,,‘/ 
IIY,IIZ). Since the maximum value of Y - 1 is 1, it is  evident that 
the  asymptotic convergence of either estimator (2)  or (3) will 
never be  faster  than l / n  regardless of how large 2k y or 2kp may be. 

It is  interesting  to focus on the  transient response of (4). In 
[3] it. is shown that l.$,l < 1 for all n 2 X O  where 

for  estimat,or (2),  where p = sup E(,,, pn being the largest, eigenvalue 
of the positive-definite matrix (~!Yn~~zYnY,,’), and y is defined above. 
For estimabor (3) 

N o  = integral  part [:I 
This means t.hat  the  transient  part of (4) will converge mono- 

tonically  for n 2 N o .  Alternatively, it is possible for the est,imat.e to 
diverge from  the desired vector for n < :Vo. Since the  quant,ity 
p/y is not known beforehand, it is impossible t,o determine X 0  for 
estimator (2). This  is  typical of most st.ochastic approximatmion 
procedures. Furthermore, p / y  may  be  quite large, especially if the 
dimension of a is large. This means that  there is  likely to  be  an 
init,ial period of divergence although  asymptotic convergence is 
assured. The novel feature of estimator (3) is that .Vo as given by 
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(8) can be controlled by judicious choice of k .  By choosing k = 1, 
N O  = 0 so that  the  transient  term is monot,onically decreasing from 
the inception of the  iteration process. 

A SUBOPTIXAL PROCEDURE 
From (5) or (6), it. is seen that it is always possible to choose 

It sufficiently large so that,  the maximum rate of asymptotic con- 
vergence is obtained, i.e., since Y - 1 is a t  most 1, select k > +? 
or k > +B. Unfortunately, y and B are  not known a priori. 
On the  other hand, the disturbance coefficient B increases with k2, 
and hence it is undesirable to choose k larger than necessary. To  
further complicat.e the problem, the  number NO increases with k .  
In  the case of estimator (2), nothing can be done in view of t.he 
limited a priori information in  the  way of selecting a near-opt,imum 
value of k .  An advantage of estimator (3) is that. something more 
can be done. To begin with, suppose that Y ,  is s-dimensional and 
let X I ,  XZ, . . . , X, be the eigenvalues of the posit,ive-definit.e matrix 
(YnYn’/llYnl12). Then 

However, 

Now, a rather conservative  upper  bound for the minimum eigen- 
value x 1  can be obtained by  asuming all of the eigenvalues to be 
equal. In  this case, (9) and (10) yield x 1  = l/s. Thus,  a  conservative 
estimate of ,9 is l/s, and hence we should choose k accordingly, say, 
k = s. Note  that s is the number of unknown parameters  and  may be 
quite large. Once k is specified, N O  is given by (8). I n  order to retain 
the  property  that  the  transient response of xn decreases from  the 
start of the  iteration procedure, the process is started wit.h n = NO. 

CONVERGENCE ACCELERATION 

In  some inst.ances, when ,3 is quite small, the above estimate can 
be  far too  conservative and poor convergence is obt.ained. This 
situat.ion is accompanied by a  large  spread  in t.he eigenvalues of 
(YnYn’//(Yn(j2) (the matrix is ill condit.ioned), and  arbitrarily 
increasing the value of k is generally unsatisfactory. In such cases 
it has been found advant.ageous to use a modified algorithm  as 
follows. At  the  time of computation of iin+l, in addition  to  the esti- 
mate correction provided in (a), a correction orthogonal to Yn and 
lying in the plane of Yn and Yn-1 is added.  The algorithm is 

where 

zn = JlYnllTn-1 - (Yn’Yn-1)Yn- (12) 

This algorithm converges to  the  true value of the  parameter  and  its 
convergence properties may be characterized  in  t,erms of parameters 
similar to t,hose used above. The proof parallels the proof of con- 
vergence of (3) as out,lined in [3]. In  this m e ,  the  property N O  = 
integral  part [k/2] is retained.  A  conservative choice of k can be 
shown t,o be s/P. An example of the application of t,he algorithm 
can be  found  in [3]. 
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Optimal Smoothing for Continuous-Time Systems 
with  Multiple  Time Delays 

I(. K. BISWAS AKD A. K. MAHALAXABIS 

Abst~aci-Equations for  the smoothed state  estimate  and for the 
error covariances of a continuous-time system with multiple time 
delays, based on observations involving time delays, are  derived 
through a combination of discretization, state  augmentation,  and 
subsequent dediscretization  procedures. 

INTRODUCTIOX 
ANhough the existing literature contains  smoothing  results for 

non-time-delayed systems, no attempt. seems to  have been made to 
extend  these to  the case of t,ime-delayed continuous-time syst,ems. 
Priemer and Vacroux have  reported some results for the discret.e- 
time version of the problem, which were obtained t.hrough projection 
arguments [l] ,  121. The aim of this correspondence is to  report 
smoothing solutions for  a continuous-time system  having both 
transportation  and observat.ion lags. T h e e  are obtained  by first. dis- 
cretizing the continuous-time problem and  then employing a st.ate 
augmentat,ion  technique [3] that converts the given problem into a 
non-time-delayed higher dimensional filtering problem. The desired 
smoothing solutions are  then obtained  from the components of the 
higher dimensional filtering equat,ions. Finally, a formal limiting 
procedure is utilized to derive t,he cont.inuous-t.ime smoot.hing solu- 
tions. 

PROBLE~I STATEMENT 

Consider a time-delayed continuous-time system modeled by t,he 
following equations: 

L 
* ( t )  = Pi(t)X(t - ai) + w( t )  (1) 

i = O  

where z is the n-vector system  st,ate, y is the m-vector observation, 
L Y ~  and Bi represent, respectively, the  ith delay in the  system  and ob- 
servation equat,ions with ai > ai-1; & > B i - I ;  (YO = BO = 0. L and 
M denote  the  total number of delays  in the syst.em and observation. 

The noise processes w ( t )  and v ( t )  are assumed to be independent, 
zero-mean, white, Gaussian processes with  covariance &(t )  and 
R(t), respectively, with R(t) posit.ive definite. 

If it is assumed t.hat t = ft (t,he kt.h sampling  instant.), ai. = diT, 
and p i  = hiT where T is the sampling interval,  the discrete-t.ime 
equivalents of ( 1 )  and (2) can be obtained in  the form [4] 
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